29 research outputs found

    Prostate MR image segmentation using 3D active appearance models

    Get PDF
    This paper presents a method for automatic segmentation of the prostate from transversal T2-weighted images based on 3D Active Appearance Models (AAM). The algorithm consist of two stages. Firstly, Shape Context based non-rigid surface registration of the manual segmented images is used to obtain the point correspondence between the given training cases. Subsequently, an AAM is used to segment the prostate on 50 training cases. The method is evaluated using a 5-fold cross validation over 5 repetitions. The mean Dice similarity coefficient and 95% Hausdorff distance are 0.78 and 7.32 mm respectively

    Robust 3-Dimensional Object Recognition using Stereo Vision and Geometric Hashing

    Get PDF
    We propose a technique that combines geometric hashing with stereo vision. The idea is to use the robustness of geometric hashing to spurious data to overcome the correspondence problem, while the stereo vision setup enables direct model matching using the 3-D object models. Furthermore, because the matching technique relies on the relative positions of local features, we should be able to perform robust recognition even with partially occluded objects. We tested this approach with simple geometric objects using a corner point detector. We successfully recognized objects even in scenes where the objects were partially occluded by other objects. For complicated scenes, however, the limited set of model features and required amount of computing time, sometimes became a proble

    Adapting to a changing highschool population

    Get PDF
    This paper reports the recent changes in the EE Bachelor program at the University of Twente. Recent generations of freshman students exhibited a lack in mathematics skills and the ability to grasp the physics behind the equations. By starting of the curriculum with a new course “Introduction to electronics and electrical engineering (IEEE)�? we have managed to solve the issue of lacking entry levels while simultaneously eliminating the unmotivated or under skilled students in a very early stage in their studies

    Artificial Intelligence-based Quantification of Pleural Plaque Volume and Association with Lung Function in Asbestos-exposed Patients

    Get PDF
    Purpose: Pleural plaques (PPs) are morphologic manifestations of long-term asbestos exposure. The relationship between PP and lung function is not well understood, whereas the time-consuming nature of PP delineation to obtain volume impedes research. To automate the laborious task of delineation, we aimed to develop automatic artificial intelligence (AI)-driven segmentation of PP. Moreover, we aimed to explore the relationship between pleural plaque volume (PPV) and pulmonary function tests.Materials and Methods: Radiologists manually delineated PPs retrospectively in computed tomography (CT) images of patients with occupational exposure to asbestos (May 2014 to November 2019). We trained an AI model with a no-new-UNet architecture. The Dice Similarity Coefficient quantified the overlap between AI and radiologists. The Spearman correlation coefficient (r) was used for the correlation between PPV and pulmonary function test metrics. When recorded, these were vital capacity (VC), forced vital capacity (FVC), and diffusing capacity for carbon monoxide (DLCO).Results: We trained the AI system on 422 CT scans in 5 folds, each time with a different fold (n = 84 to 85) as a test set. On these independent test sets combined, the correlation between the predicted volumes and the ground truth was r = 0.90, and the median overlap was 0.71 Dice Similarity Coefficient. We found weak to moderate correlations with PPV for VC (n = 80, r = -0.40) and FVC (n = 82, r = -0.38), but no correlation for DLCO (n = 84, r = -0.09). When the cohort was split on the median PPV, we observed statistically significantly lower VC (P = 0.001) and FVC (P = 0.04) values for the higher PPV patients, but not for DLCO (P = 0.19).Conclusion: We successfully developed an AI algorithm to automatically segment PP in CT images to enable fast volume extraction. Moreover, we have observed that PPV is associated with loss in VC and FVC.</p

    Music playlist generation by assimilating GMMs into SOMs

    Get PDF
    A method for music playlist generation, using assimilated Gaussian mixture models (GMMs) in self organizing maps (SOMs) is presented. Traditionally, the neurons in a SOM are represented by vectors, but in this paper we propose to use GMMs instead. To this end, we introduce a method to adapt a GMM such that its distance to a second GMM decreases at a controllable rate. Self organization is demonstrated using a small music database and a music classification task

    Automatic detection of diabetic foot complications with infrared thermography by asymmetric analysis

    Get PDF
    Early identification of diabetic foot complications and their precursors is essential in preventing their devastating consequences, such as foot infection and amputation. Frequent, automatic risk assessment by an intelligent telemedicine system might be feasible and cost effective. Infrared thermography is a promising modality for such a system. The temperature differences between corresponding areas on contralateral feet are the clinically significant parameters. This asymmetric analysis is hindered by (1) foot segmentation errors, especially when the foot temperature and the ambient temperature are comparable, and by (2) different shapes and sizes between contralateral feet due to deformities or minor amputations. To circumvent the first problem, we used a color image and a thermal image acquired synchronously. Foot regions, detected in the color image, were rigidly registered to the thermal image. This resulted in 97.8% ± 1.1% sensitivity and 98.4% ± 0.5% specificity over 76 high-risk diabetic patients with manual annotation as a reference. Nonrigid landmark-based registration with Bsplines solved the second problem. Corresponding points in the two feet could be found regardless of the shapes and sizes of the feet. With that, the temperature difference of the left and right feet could be obtained

    Geometric Hashing: Error Analysis

    No full text
    We develop a model for predicting the probability of incorrect, random matches when using a geometric hashing based recognition scheme. To estimate the vote for random matches we approximate the voting function by a discrete function and use the binomial distribution. The resulting probability distribution of votes for random matches is compared with experiments that have a set of artificially generated, randomly distributed points as input. We find that the theoretical model accurately predicts the votes for random matches for most of the object models that we used. For the other models there were only small deviations. 1 Introduction Geometric hashing provides a simple and efficient technique used in object recognition to match object models to a set of measurement features. In a noise free situation this technique will find only the correct object model. In real life applications, however, spurious measurement features will occur and noise will compromise the (positional) accuracy..
    corecore